$conversionUnits
$conversionUnits : array<mixed,mixed>
Details of the Units of measure that can be used in CONVERTUOM()
PHPExcel_Calculation_Engineering
Copyright (c) 2006 - 2015 PHPExcel
This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
BINTODEC(string $x) : string
BINTODEC
Return a binary value as decimal.
Excel Function: BIN2DEC(x)
string | $x | The binary number (as a string) that you want to convert. The number cannot contain more than 10 characters (10 bits). The most significant bit of number is the sign bit. The remaining 9 bits are magnitude bits. Negative numbers are represented using two's-complement notation. If number is not a valid binary number, or if number contains more than 10 characters (10 bits), BIN2DEC returns the #NUM! error value. |
BINTOHEX(string $x, integer $places = null) : string
BINTOHEX
Return a binary value as hex.
Excel Function: BIN2HEX(x[,places])
string | $x | The binary number (as a string) that you want to convert. The number cannot contain more than 10 characters (10 bits). The most significant bit of number is the sign bit. The remaining 9 bits are magnitude bits. Negative numbers are represented using two's-complement notation. If number is not a valid binary number, or if number contains more than 10 characters (10 bits), BIN2HEX returns the #NUM! error value. |
integer | $places | The number of characters to use. If places is omitted, BIN2HEX uses the minimum number of characters necessary. Places is useful for padding the return value with leading 0s (zeros). If places is not an integer, it is truncated. If places is nonnumeric, BIN2HEX returns the #VALUE! error value. If places is negative, BIN2HEX returns the #NUM! error value. |
BINTOOCT(string $x, integer $places = null) : string
BINTOOCT
Return a binary value as octal.
Excel Function: BIN2OCT(x[,places])
string | $x | The binary number (as a string) that you want to convert. The number cannot contain more than 10 characters (10 bits). The most significant bit of number is the sign bit. The remaining 9 bits are magnitude bits. Negative numbers are represented using two's-complement notation. If number is not a valid binary number, or if number contains more than 10 characters (10 bits), BIN2OCT returns the #NUM! error value. |
integer | $places | The number of characters to use. If places is omitted, BIN2OCT uses the minimum number of characters necessary. Places is useful for padding the return value with leading 0s (zeros). If places is not an integer, it is truncated. If places is nonnumeric, BIN2OCT returns the #VALUE! error value. If places is negative, BIN2OCT returns the #NUM! error value. |
DECTOBIN(string $x, integer $places = null) : string
DECTOBIN
Return a decimal value as binary.
Excel Function: DEC2BIN(x[,places])
string | $x | The decimal integer you want to convert. If number is negative, valid place values are ignored and DEC2BIN returns a 10-character (10-bit) binary number in which the most significant bit is the sign bit. The remaining 9 bits are magnitude bits. Negative numbers are represented using two's-complement notation. If number < -512 or if number > 511, DEC2BIN returns the #NUM! error value. If number is nonnumeric, DEC2BIN returns the #VALUE! error value. If DEC2BIN requires more than places characters, it returns the #NUM! error value. |
integer | $places | The number of characters to use. If places is omitted, DEC2BIN uses the minimum number of characters necessary. Places is useful for padding the return value with leading 0s (zeros). If places is not an integer, it is truncated. If places is nonnumeric, DEC2BIN returns the #VALUE! error value. If places is zero or negative, DEC2BIN returns the #NUM! error value. |
DECTOHEX(string $x, integer $places = null) : string
DECTOHEX
Return a decimal value as hex.
Excel Function: DEC2HEX(x[,places])
string | $x | The decimal integer you want to convert. If number is negative, places is ignored and DEC2HEX returns a 10-character (40-bit) hexadecimal number in which the most significant bit is the sign bit. The remaining 39 bits are magnitude bits. Negative numbers are represented using two's-complement notation. If number < -549,755,813,888 or if number > 549,755,813,887, DEC2HEX returns the #NUM! error value. If number is nonnumeric, DEC2HEX returns the #VALUE! error value. If DEC2HEX requires more than places characters, it returns the NUM! error value. |
integer | $places | The number of characters to use. If places is omitted, DEC2HEX uses the minimum number of characters necessary. Places is useful for padding the return value with leading 0s (zeros). If places is not an integer, it is truncated. If places is nonnumeric, DEC2HEX returns the #VALUE! error value. If places is zero or negative, DEC2HEX returns the #NUM! error value. |
DECTOOCT(string $x, integer $places = null) : string
DECTOOCT
Return an decimal value as octal.
Excel Function: DEC2OCT(x[,places])
string | $x | The decimal integer you want to convert. If number is negative, places is ignored and DEC2OCT returns a 10-character (30-bit) octal number in which the most significant bit is the sign bit. The remaining 29 bits are magnitude bits. Negative numbers are represented using two's-complement notation. If number < -536,870,912 or if number > 536,870,911, DEC2OCT returns the #NUM! error value. If number is nonnumeric, DEC2OCT returns the #VALUE! error value. If DEC2OCT requires more than places characters, it returns the NUM! error value. |
integer | $places | The number of characters to use. If places is omitted, DEC2OCT uses the minimum number of characters necessary. Places is useful for padding the return value with leading 0s (zeros). If places is not an integer, it is truncated. If places is nonnumeric, DEC2OCT returns the #VALUE! error value. If places is zero or negative, DEC2OCT returns the #NUM! error value. |
HEXTOBIN(string $x, integer $places = null) : string
HEXTOBIN
Return a hex value as binary.
Excel Function: HEX2BIN(x[,places])
string | $x | the hexadecimal number you want to convert. Number cannot contain more than 10 characters. The most significant bit of number is the sign bit (40th bit from the right). The remaining 9 bits are magnitude bits. Negative numbers are represented using two's-complement notation. If number is negative, HEX2BIN ignores places and returns a 10-character binary number. If number is negative, it cannot be less than FFFFFFFE00, and if number is positive, it cannot be greater than 1FF. If number is not a valid hexadecimal number, HEX2BIN returns the #NUM! error value. If HEX2BIN requires more than places characters, it returns the #NUM! error value. |
integer | $places | The number of characters to use. If places is omitted, HEX2BIN uses the minimum number of characters necessary. Places is useful for padding the return value with leading 0s (zeros). If places is not an integer, it is truncated. If places is nonnumeric, HEX2BIN returns the #VALUE! error value. If places is negative, HEX2BIN returns the #NUM! error value. |
HEXTODEC(string $x) : string
HEXTODEC
Return a hex value as decimal.
Excel Function: HEX2DEC(x)
string | $x | The hexadecimal number you want to convert. This number cannot contain more than 10 characters (40 bits). The most significant bit of number is the sign bit. The remaining 39 bits are magnitude bits. Negative numbers are represented using two's-complement notation. If number is not a valid hexadecimal number, HEX2DEC returns the NUM! error value. |
HEXTOOCT(string $x, integer $places = null) : string
HEXTOOCT
Return a hex value as octal.
Excel Function: HEX2OCT(x[,places])
string | $x | The hexadecimal number you want to convert. Number cannot contain more than 10 characters. The most significant bit of number is the sign bit. The remaining 39 bits are magnitude bits. Negative numbers are represented using two's-complement notation. If number is negative, HEX2OCT ignores places and returns a 10-character octal number. If number is negative, it cannot be less than FFE0000000, and if number is positive, it cannot be greater than 1FFFFFFF. If number is not a valid hexadecimal number, HEX2OCT returns the #NUM! error value. If HEX2OCT requires more than places characters, it returns the #NUM! error value. |
integer | $places | The number of characters to use. If places is omitted, HEX2OCT uses the minimum number of characters necessary. Places is useful for padding the return value with leading 0s (zeros). If places is not an integer, it is truncated. If places is nonnumeric, HEX2OCT returns the #VALUE! error value. If places is negative, HEX2OCT returns the #NUM! error value. |
OCTTOBIN(string $x, integer $places = null) : string
OCTTOBIN
Return an octal value as binary.
Excel Function: OCT2BIN(x[,places])
string | $x | The octal number you want to convert. Number may not contain more than 10 characters. The most significant bit of number is the sign bit. The remaining 29 bits are magnitude bits. Negative numbers are represented using two's-complement notation. If number is negative, OCT2BIN ignores places and returns a 10-character binary number. If number is negative, it cannot be less than 7777777000, and if number is positive, it cannot be greater than 777. If number is not a valid octal number, OCT2BIN returns the #NUM! error value. If OCT2BIN requires more than places characters, it returns the #NUM! error value. |
integer | $places | The number of characters to use. If places is omitted, OCT2BIN uses the minimum number of characters necessary. Places is useful for padding the return value with leading 0s (zeros). If places is not an integer, it is truncated. If places is nonnumeric, OCT2BIN returns the #VALUE! error value. If places is negative, OCT2BIN returns the #NUM! error value. |
OCTTODEC(string $x) : string
OCTTODEC
Return an octal value as decimal.
Excel Function: OCT2DEC(x)
string | $x | The octal number you want to convert. Number may not contain more than 10 octal characters (30 bits). The most significant bit of number is the sign bit. The remaining 29 bits are magnitude bits. Negative numbers are represented using two's-complement notation. If number is not a valid octal number, OCT2DEC returns the NUM! error value. |
OCTTOHEX(string $x, integer $places = null) : string
OCTTOHEX
Return an octal value as hex.
Excel Function: OCT2HEX(x[,places])
string | $x | The octal number you want to convert. Number may not contain more than 10 octal characters (30 bits). The most significant bit of number is the sign bit. The remaining 29 bits are magnitude bits. Negative numbers are represented using two's-complement notation. If number is negative, OCT2HEX ignores places and returns a 10-character hexadecimal number. If number is not a valid octal number, OCT2HEX returns the NUM! error value.
|
integer | $places | The number of characters to use. If places is omitted, OCT2HEX uses the minimum number of characters necessary. Places is useful for padding the return value with leading 0s (zeros). If places is not an integer, it is truncated. If places is nonnumeric, OCT2HEX returns the #VALUE! error value. If places is negative, OCT2HEX returns the #NUM! error value. |
COMPLEX(float $realNumber = 0.0, float $imaginary = 0.0, string $suffix = 'i') : string
COMPLEX
Converts real and imaginary coefficients into a complex number of the form x + yi or x + yj.
Excel Function: COMPLEX(realNumber,imaginary[,places])
float | $realNumber | The real coefficient of the complex number. |
float | $imaginary | The imaginary coefficient of the complex number. |
string | $suffix | The suffix for the imaginary component of the complex number. If omitted, the suffix is assumed to be "i". |
IMAGINARY(string $complexNumber) : float
IMAGINARY
Returns the imaginary coefficient of a complex number in x + yi or x + yj text format.
Excel Function: IMAGINARY(complexNumber)
string | $complexNumber | The complex number for which you want the imaginary coefficient. |
IMARGUMENT(string $complexNumber) : float
IMARGUMENT
Returns the argument theta of a complex number, i.e. the angle in radians from the real axis to the representation of the number in polar coordinates.
Excel Function: IMARGUMENT(complexNumber)
string | $complexNumber | The complex number for which you want the argument theta. |
IMPOWER(string $complexNumber, float $realNumber) : string
IMPOWER
Returns a complex number in x + yi or x + yj text format raised to a power.
Excel Function: IMPOWER(complexNumber,realNumber)
string | $complexNumber | The complex number you want to raise to a power. |
float | $realNumber | The power to which you want to raise the complex number. |
IMDIV(string $complexDividend, string $complexDivisor) : string
IMDIV
Returns the quotient of two complex numbers in x + yi or x + yj text format.
Excel Function: IMDIV(complexDividend,complexDivisor)
string | $complexDividend | The complex numerator or dividend. |
string | $complexDivisor | The complex denominator or divisor. |
IMSUB(string $complexNumber1, string $complexNumber2) : string
IMSUB
Returns the difference of two complex numbers in x + yi or x + yj text format.
Excel Function: IMSUB(complexNumber1,complexNumber2)
string | $complexNumber1 | The complex number from which to subtract complexNumber2. |
string | $complexNumber2 | The complex number to subtract from complexNumber1. |
DELTA(float $a, $b)
DELTA
Tests whether two values are equal. Returns 1 if number1 = number2; returns 0 otherwise. Use this function to filter a set of values. For example, by summing several DELTA functions you calculate the count of equal pairs. This function is also known as the Kronecker Delta function.
Excel Function: DELTA(a[,b])
float | $a | The first number. @param float $b The second number. If omitted, b is assumed to be zero. @return int |
$b |
GESTEP(float $number, $step)
GESTEP
Excel Function: GESTEP(number[,step])
Returns 1 if number >= step; returns 0 (zero) otherwise Use this function to filter a set of values. For example, by summing several GESTEP functions you calculate the count of values that exceed a threshold.
float | $number | The value to test against step. @param float $step The threshold value. If you omit a value for step, GESTEP uses zero. @return int |
$step |
ERF(float $lower, $upper = null)
ERF
Returns the error function integrated between the lower and upper bound arguments.
Note: In Excel 2007 or earlier, if you input a negative value for the upper or lower bound arguments, the function would return a #NUM! error. However, in Excel 2010, the function algorithm was improved, so that it can now calculate the function for both positive and negative ranges. PHPExcel follows Excel 2010 behaviour, and accepts nagative arguments.
Excel Function: ERF(lower[,upper])
float | $lower | lower bound for integrating ERF @param float $upper upper bound for integrating ERF. If omitted, ERF integrates between zero and lower_limit @return float |
$upper |
ERFC(float $x)
ERFC
Returns the complementary ERF function integrated between x and infinity
Note: In Excel 2007 or earlier, if you input a negative value for the lower bound argument, the function would return a #NUM! error. However, in Excel 2010, the function algorithm was improved, so that it can now calculate the function for both positive and negative x values. PHPExcel follows Excel 2010 behaviour, and accepts nagative arguments.
Excel Function: ERFC(x)
float | $x | The lower bound for integrating ERFC @return float |
CONVERTUOM(float $value, $fromUOM, $toUOM)
CONVERTUOM
Converts a number from one measurement system to another. For example, CONVERT can translate a table of distances in miles to a table of distances in kilometers.
Excel Function: CONVERT(value,fromUOM,toUOM)
float | $value | The value in fromUOM to convert. @param string $fromUOM The units for value. @param string $toUOM The units for the result. @return float |
$fromUOM | ||
$toUOM |