Array for internal storage of nonsymmetric Hessenberg form.
@var array
Type
$ort
$ort :
Working storage for nonsymmetric algorithm.
@var array
Type
$cdivr
$cdivr :
Used for complex scalar division.
@var float
Type
$cdivi
$cdivi :
Type
Methods
__construct()
__construct( $Arg)
Constructor: Check for symmetry, then construct the eigenvalue decomposition
@access public
Parameters
$Arg
getV()
getV() : \V
Return the eigenvector matrix
@access public
Returns
\V
getRealEigenvalues()
getRealEigenvalues() : \real(diag(D))
Return the real parts of the eigenvalues
@access public
Returns
\real(diag(D))
getImagEigenvalues()
getImagEigenvalues() : \imag(diag(D))
Return the imaginary parts of the eigenvalues
@access public
Returns
\imag(diag(D))
getD()
getD() : \D
Return the block diagonal eigenvalue matrix
@access public
Returns
\D
tred2()
tred2()
Symmetric Householder reduction to tridiagonal form.
@access private
tql2()
tql2()
Symmetric tridiagonal QL algorithm.
This is derived from the Algol procedures tql2, by
Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
Fortran subroutine in EISPACK.
orthes()
orthes()
Nonsymmetric reduction to Hessenberg form.
This is derived from the Algol procedures orthes and ortran,
by Martin and Wilkinson, Handbook for Auto. Comp.,
Vol.ii-Linear Algebra, and the corresponding
Fortran subroutines in EISPACK.
cdiv()
cdiv( $xr, $xi, $yr, $yi)
Performs complex division.
@access private
Parameters
$xr
$xi
$yr
$yi
hqr2()
hqr2()
Nonsymmetric reduction from Hessenberg to real Schur form.
Code is derived from the Algol procedure hqr2,
by Martin and Wilkinson, Handbook for Auto. Comp.,
Vol.ii-Linear Algebra, and the corresponding
Fortran subroutine in EISPACK.