Properties

$luMatrix

$luMatrix : 

Type

$rows

$rows : 

Type

$columns

$columns : 

Type

$pivot

$pivot : 

Type

Methods

__construct()

__construct(\Matrix\Matrix  $matrix) 

Parameters

\Matrix\Matrix $matrix

getL()

getL() : \Matrix\Matrix

Get lower triangular factor.

Returns

\Matrix\Matrix

Lower triangular factor

getU()

getU() : \Matrix\Matrix

Get upper triangular factor.

Returns

\Matrix\Matrix

Upper triangular factor

getP()

getP() : \Matrix\Matrix

Return pivot permutation vector.

Returns

\Matrix\Matrix

Pivot matrix

getPivot()

getPivot() : array

Return pivot permutation vector.

Returns

array —

Pivot vector

isNonsingular()

isNonsingular() : boolean

Is the matrix nonsingular?

Returns

boolean —

true if U, and hence A, is nonsingular

solve()

solve(\Matrix\Matrix  $B) : \Matrix\Matrix

Solve A*X = B.

Parameters

\Matrix\Matrix $B

a Matrix with as many rows as A and any number of columns

Throws

\Matrix\Exception

Returns

\Matrix\Matrix

X so that LUX = B(piv,:)

buildPivot()

buildPivot() 

localisedReferenceColumn()

localisedReferenceColumn(  $column) 

Parameters

$column

applyTransformations()

applyTransformations(  $column, array  $luColumn) 

Parameters

$column
array $luColumn

findPivot()

findPivot(  $column, array  $luColumn) 

Parameters

$column
array $luColumn

pivotExchange()

pivotExchange(  $pivot,   $column) 

Parameters

$pivot
$column

computeMultipliers()

computeMultipliers(  $diagonal) 

Parameters

$diagonal