$LUMINANCE_BITS
$LUMINANCE_BITS
This class implements a local thresholding algorithm, which while slower than the GlobalHistogramBinarizer, is fairly efficient for what it does. It is designed for high frequency images of barcodes with black data on white backgrounds. For this application, it does a much better job than a global blackpoint with severe shadows and gradients.
However it tends to produce artifacts on lower frequency images and is therefore not a good general purpose binarizer for uses outside ZXing.
This class extends GlobalHistogramBinarizer, using the older histogram approach for 1D readers, and the newer local approach for 2D readers. 1D decoding using a per-row histogram is already inherently local, and only fails for horizontal gradients. We can revisit that problem later, but for now it was not a win to use local blocks for 1D.
This Binarizer is the default for the unit tests and the recommended class for library users.
getBlackRow(mixed $y, mixed $row) : array
Converts one row of luminance data to 1 bit data. May actually do the conversion, or return cached data. Callers should assume this method is expensive and call it as seldom as possible.
This method is intended for decoding 1D barcodes and may choose to apply sharpening. For callers which only examine one row of pixels at a time, the same BitArray should be reused and passed in with each call for performance. However it is legal to keep more than one row at a time if needed.
mixed | $y | |
mixed | $row |
if row can't be binarized
The array of bits for this row (true means black).
getBlackMatrix() : \Zxing\Common\BitMatrix
Calculates the final BitMatrix once for all requests. This could be called once from the constructor instead, but there are some advantages to doing it lazily, such as making profiling easier, and not doing heavy lifting when callers don't expect it.
The 2D array of bits for the image (true means black).
createBinarizer(mixed $source) : \Zxing\Binarizer
Creates a new object with the same type as this Binarizer implementation, but with pristine state. This is needed because Binarizer implementations may be stateful, e.g. keeping a cache of 1 bit data. See Effective Java for why we can't use Java's clone() method.
mixed | $source |
A new concrete Binarizer implementation object.
calculateBlackPoints(mixed $luminances, mixed $subWidth, mixed $subHeight, mixed $width, mixed $height) : mixed
Calculates a single black point for each block of pixels and saves it away.
See the following thread for a discussion of this algorithm: http://groups.google.com/group/zxing/browse_thread/thread/d06efa2c35a7ddc0
mixed | $luminances | |
mixed | $subWidth | |
mixed | $subHeight | |
mixed | $width | |
mixed | $height |
calculateThresholdForBlock(mixed $luminances, mixed $subWidth, mixed $subHeight, mixed $width, mixed $height, mixed $blackPoints, mixed $matrix) : mixed
For each block in the image, calculate the average black point using a 5x5 grid of the blocks around it. Also handles the corner cases (fractional blocks are computed based on the last pixels in the row/column which are also used in the previous block).
mixed | $luminances | |
mixed | $subWidth | |
mixed | $subHeight | |
mixed | $width | |
mixed | $height | |
mixed | $blackPoints | |
mixed | $matrix |
thresholdBlock(mixed $luminances, mixed $xoffset, mixed $yoffset, mixed $threshold, mixed $stride, mixed $matrix) : mixed
Applies a single threshold to a block of pixels.
mixed | $luminances | |
mixed | $xoffset | |
mixed | $yoffset | |
mixed | $threshold | |
mixed | $stride | |
mixed | $matrix |
<?php
/*
* Copyright 2009 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
namespace Zxing\Common;
use Zxing\Binarizer;
use Zxing\LuminanceSource;
use Zxing\NotFoundException;
/**
* This class implements a local thresholding algorithm, which while slower than the
* GlobalHistogramBinarizer, is fairly efficient for what it does. It is designed for
* high frequency images of barcodes with black data on white backgrounds. For this application,
* it does a much better job than a global blackpoint with severe shadows and gradients.
* However it tends to produce artifacts on lower frequency images and is therefore not
* a good general purpose binarizer for uses outside ZXing.
*
* This class extends GlobalHistogramBinarizer, using the older histogram approach for 1D readers,
* and the newer local approach for 2D readers. 1D decoding using a per-row histogram is already
* inherently local, and only fails for horizontal gradients. We can revisit that problem later,
* but for now it was not a win to use local blocks for 1D.
*
* This Binarizer is the default for the unit tests and the recommended class for library users.
*
* @author dswitkin@google.com (Daniel Switkin)
*/
final class HybridBinarizer extends GlobalHistogramBinarizer
{
// This class uses 5x5 blocks to compute local luminance, where each block is 8x8 pixels.
// So this is the smallest dimension in each axis we can accept.
private static $BLOCK_SIZE_POWER = 3;
private static $BLOCK_SIZE = 8; // ...0100...00
private static $BLOCK_SIZE_MASK = 7; // ...0011...11
private static $MINIMUM_DIMENSION = 40;
private static $MIN_DYNAMIC_RANGE = 24;
private $matrix;
public function __construct($source)
{
parent::__construct($source);
self::$BLOCK_SIZE_POWER = 3;
self::$BLOCK_SIZE = 1 << self::$BLOCK_SIZE_POWER; // ...0100...00
self::$BLOCK_SIZE_MASK = self::$BLOCK_SIZE - 1; // ...0011...11
self::$MINIMUM_DIMENSION = self::$BLOCK_SIZE * 5;
self::$MIN_DYNAMIC_RANGE = 24;
}
/**
* Calculates the final BitMatrix once for all requests. This could be called once from the
* constructor instead, but there are some advantages to doing it lazily, such as making
* profiling easier, and not doing heavy lifting when callers don't expect it.
*/
public function getBlackMatrix()
{
if ($this->matrix !== null) {
return $this->matrix;
}
$source = $this->getLuminanceSource();
$width = $source->getWidth();
$height = $source->getHeight();
if ($width >= self::$MINIMUM_DIMENSION && $height >= self::$MINIMUM_DIMENSION) {
$luminances = $source->getMatrix();
$subWidth = $width >> self::$BLOCK_SIZE_POWER;
if (($width & self::$BLOCK_SIZE_MASK) != 0) {
$subWidth++;
}
$subHeight = $height >> self::$BLOCK_SIZE_POWER;
if (($height & self::$BLOCK_SIZE_MASK) != 0) {
$subHeight++;
}
$blackPoints = self::calculateBlackPoints($luminances, $subWidth, $subHeight, $width, $height);
$newMatrix = new BitMatrix($width, $height);
self::calculateThresholdForBlock($luminances, $subWidth, $subHeight, $width, $height, $blackPoints, $newMatrix);
$this->matrix = $newMatrix;
} else {
// If the image is too small, fall back to the global histogram approach.
$this->matrix = parent::getBlackMatrix();
}
return $this->matrix;
}
/**
* Calculates a single black point for each block of pixels and saves it away.
* See the following thread for a discussion of this algorithm:
* http://groups.google.com/group/zxing/browse_thread/thread/d06efa2c35a7ddc0
*/
private static function calculateBlackPoints(
$luminances,
$subWidth,
$subHeight,
$width,
$height
) {
$blackPoints = fill_array(0, $subHeight, 0);
foreach ($blackPoints as $key => $point) {
$blackPoints[$key] = fill_array(0, $subWidth, 0);
}
for ($y = 0; $y < $subHeight; $y++) {
$yoffset = ($y << self::$BLOCK_SIZE_POWER);
$maxYOffset = $height - self::$BLOCK_SIZE;
if ($yoffset > $maxYOffset) {
$yoffset = $maxYOffset;
}
for ($x = 0; $x < $subWidth; $x++) {
$xoffset = ($x << self::$BLOCK_SIZE_POWER);
$maxXOffset = $width - self::$BLOCK_SIZE;
if ($xoffset > $maxXOffset) {
$xoffset = $maxXOffset;
}
$sum = 0;
$min = 0xFF;
$max = 0;
for ($yy = 0, $offset = $yoffset * $width + $xoffset; $yy < self::$BLOCK_SIZE; $yy++, $offset += $width) {
for ($xx = 0; $xx < self::$BLOCK_SIZE; $xx++) {
$pixel = ((int)($luminances[(int)($offset + $xx)]) & 0xFF);
$sum += $pixel;
// still looking for good contrast
if ($pixel < $min) {
$min = $pixel;
}
if ($pixel > $max) {
$max = $pixel;
}
}
// short-circuit min/max tests once dynamic range is met
if ($max - $min > self::$MIN_DYNAMIC_RANGE) {
// finish the rest of the rows quickly
for ($yy++, $offset += $width; $yy < self::$BLOCK_SIZE; $yy++, $offset += $width) {
for ($xx = 0; $xx < self::$BLOCK_SIZE; $xx++) {
$sum += ($luminances[$offset + $xx] & 0xFF);
}
}
}
}
// The default estimate is the average of the values in the block.
$average = ($sum >> (self::$BLOCK_SIZE_POWER * 2));
if ($max - $min <= self::$MIN_DYNAMIC_RANGE) {
// If variation within the block is low, assume this is a block with only light or only
// dark pixels. In that case we do not want to use the average, as it would divide this
// low contrast area into black and white pixels, essentially creating data out of noise.
//
// The default assumption is that the block is light/background. Since no estimate for
// the level of dark pixels exists locally, use half the min for the block.
$average = (int)($min / 2);
if ($y > 0 && $x > 0) {
// Correct the "white background" assumption for blocks that have neighbors by comparing
// the pixels in this block to the previously calculated black points. This is based on
// the fact that dark barcode symbology is always surrounded by some amount of light
// background for which reasonable black point estimates were made. The bp estimated at
// the boundaries is used for the interior.
// The (min < bp) is arbitrary but works better than other heuristics that were tried.
$averageNeighborBlackPoint =
(int)(($blackPoints[$y - 1][$x] + (2 * $blackPoints[$y][$x - 1]) + $blackPoints[$y - 1][$x - 1]) / 4);
if ($min < $averageNeighborBlackPoint) {
$average = $averageNeighborBlackPoint;
}
}
}
$blackPoints[$y][$x] = (int)($average);
}
}
return $blackPoints;
}
/**
* For each block in the image, calculate the average black point using a 5x5 grid
* of the blocks around it. Also handles the corner cases (fractional blocks are computed based
* on the last pixels in the row/column which are also used in the previous block).
*/
private static function calculateThresholdForBlock(
$luminances,
$subWidth,
$subHeight,
$width,
$height,
$blackPoints,
$matrix
) {
for ($y = 0; $y < $subHeight; $y++) {
$yoffset = ($y << self::$BLOCK_SIZE_POWER);
$maxYOffset = $height - self::$BLOCK_SIZE;
if ($yoffset > $maxYOffset) {
$yoffset = $maxYOffset;
}
for ($x = 0; $x < $subWidth; $x++) {
$xoffset = ($x << self::$BLOCK_SIZE_POWER);
$maxXOffset = $width - self::$BLOCK_SIZE;
if ($xoffset > $maxXOffset) {
$xoffset = $maxXOffset;
}
$left = self::cap($x, 2, $subWidth - 3);
$top = self::cap($y, 2, $subHeight - 3);
$sum = 0;
for ($z = -2; $z <= 2; $z++) {
$blackRow = $blackPoints[$top + $z];
$sum += $blackRow[$left - 2] + $blackRow[$left - 1] + $blackRow[$left] + $blackRow[$left + 1] + $blackRow[$left + 2];
}
$average = (int)($sum / 25);
self::thresholdBlock($luminances, $xoffset, $yoffset, $average, $width, $matrix);
}
}
}
private static function cap($value, $min, $max)
{
if ($value < $min) {
return $min;
} elseif ($value > $max) {
return $max;
} else {
return $value;
}
}
/**
* Applies a single threshold to a block of pixels.
*/
private static function thresholdBlock(
$luminances,
$xoffset,
$yoffset,
$threshold,
$stride,
$matrix
) {
for ($y = 0, $offset = $yoffset * $stride + $xoffset; $y < self::$BLOCK_SIZE; $y++, $offset += $stride) {
for ($x = 0; $x < self::$BLOCK_SIZE; $x++) {
// Comparison needs to be <= so that black == 0 pixels are black even if the threshold is 0.
if (($luminances[$offset + $x] & 0xFF) <= $threshold) {
$matrix->set($xoffset + $x, $yoffset + $y);
}
}
}
}
public function createBinarizer($source)
{
return new HybridBinarizer($source);
}
}