$source
$source
This Binarizer implementation uses the old ZXing global histogram approach. It is suitable for low-end mobile devices which don't have enough CPU or memory to use a local thresholding algorithm. However, because it picks a global black point, it cannot handle difficult shadows and gradients.
Faster mobile devices and all desktop applications should probably use HybridBinarizer instead.
getBlackRow(mixed $y, mixed $row = null) : array
Converts one row of luminance data to 1 bit data. May actually do the conversion, or return cached data. Callers should assume this method is expensive and call it as seldom as possible.
This method is intended for decoding 1D barcodes and may choose to apply sharpening. For callers which only examine one row of pixels at a time, the same BitArray should be reused and passed in with each call for performance. However it is legal to keep more than one row at a time if needed.
mixed | $y | |
mixed | $row |
The array of bits for this row (true means black).
getBlackMatrix() : \Zxing\Common\BitMatrix
Converts a 2D array of luminance data to 1 bit data. As above, assume this method is expensive and do not call it repeatedly. This method is intended for decoding 2D barcodes and may or may not apply sharpening. Therefore, a row from this matrix may not be identical to one fetched using getBlackRow(), so don't mix and match between them.
The 2D array of bits for the image (true means black).
createBinarizer(mixed $source) : \Zxing\Binarizer
Creates a new object with the same type as this Binarizer implementation, but with pristine state. This is needed because Binarizer implementations may be stateful, e.g. keeping a cache of 1 bit data. See Effective Java for why we can't use Java's clone() method.
mixed | $source |
A new concrete Binarizer implementation object.
<?php
/*
* Copyright 2009 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
namespace Zxing\Common;
use Zxing\Binarizer;
use Zxing\LuminanceSource;
use Zxing\NotFoundException;
/**
* This Binarizer implementation uses the old ZXing global histogram approach. It is suitable
* for low-end mobile devices which don't have enough CPU or memory to use a local thresholding
* algorithm. However, because it picks a global black point, it cannot handle difficult shadows
* and gradients.
*
* Faster mobile devices and all desktop applications should probably use HybridBinarizer instead.
*
* @author dswitkin@google.com (Daniel Switkin)
* @author Sean Owen
*/
class GlobalHistogramBinarizer extends Binarizer
{
private static $LUMINANCE_BITS = 5;
private static $LUMINANCE_SHIFT = 3;
private static $LUMINANCE_BUCKETS = 32;
private static $EMPTY = [];
private $luminances = [];
private $buckets = [];
private $source = [];
public function __construct($source)
{
self::$LUMINANCE_SHIFT = 8 - self::$LUMINANCE_BITS;
self::$LUMINANCE_BUCKETS = 1 << self::$LUMINANCE_BITS;
parent::__construct($source);
$this->luminances = self::$EMPTY;
$this->buckets = fill_array(0, self::$LUMINANCE_BUCKETS, 0);
$this->source = $source;
}
// Applies simple sharpening to the row data to improve performance of the 1D Readers.
public function getBlackRow($y, $row = null)
{
$this->source = $this->getLuminanceSource();
$width = $this->source->getWidth();
if ($row == null || $row->getSize() < $width) {
$row = new BitArray($width);
} else {
$row->clear();
}
$this->initArrays($width);
$localLuminances = $this->source->getRow($y, $this->luminances);
$localBuckets = $this->buckets;
for ($x = 0; $x < $width; $x++) {
$pixel = $localLuminances[$x] & 0xff;
$localBuckets[$pixel >> self::$LUMINANCE_SHIFT]++;
}
$blackPoint = self::estimateBlackPoint($localBuckets);
$left = $localLuminances[0] & 0xff;
$center = $localLuminances[1] & 0xff;
for ($x = 1; $x < $width - 1; $x++) {
$right = $localLuminances[$x + 1] & 0xff;
// A simple -1 4 -1 box filter with a weight of 2.
$luminance = (($center * 4) - $left - $right) / 2;
if ($luminance < $blackPoint) {
$row->set($x);
}
$left = $center;
$center = $right;
}
return $row;
}
// Does not sharpen the data, as this call is intended to only be used by 2D Readers.
private function initArrays($luminanceSize)
{
if (count($this->luminances) < $luminanceSize) {
$this->luminances = [];
}
for ($x = 0; $x < self::$LUMINANCE_BUCKETS; $x++) {
$this->buckets[$x] = 0;
}
}
private static function estimateBlackPoint($buckets)
{
// Find the tallest peak in the histogram.
$numBuckets = count($buckets);
$maxBucketCount = 0;
$firstPeak = 0;
$firstPeakSize = 0;
for ($x = 0; $x < $numBuckets; $x++) {
if ($buckets[$x] > $firstPeakSize) {
$firstPeak = $x;
$firstPeakSize = $buckets[$x];
}
if ($buckets[$x] > $maxBucketCount) {
$maxBucketCount = $buckets[$x];
}
}
// Find the second-tallest peak which is somewhat far from the tallest peak.
$secondPeak = 0;
$secondPeakScore = 0;
for ($x = 0; $x < $numBuckets; $x++) {
$distanceToBiggest = $x - $firstPeak;
// Encourage more distant second peaks by multiplying by square of distance.
$score = $buckets[$x] * $distanceToBiggest * $distanceToBiggest;
if ($score > $secondPeakScore) {
$secondPeak = $x;
$secondPeakScore = $score;
}
}
// Make sure firstPeak corresponds to the black peak.
if ($firstPeak > $secondPeak) {
$temp = $firstPeak;
$firstPeak = $secondPeak;
$secondPeak = $temp;
}
// If there is too little contrast in the image to pick a meaningful black point, throw rather
// than waste time trying to decode the image, and risk false positives.
if ($secondPeak - $firstPeak <= $numBuckets / 16) {
throw NotFoundException::getNotFoundInstance();
}
// Find a valley between them that is low and closer to the white peak.
$bestValley = $secondPeak - 1;
$bestValleyScore = -1;
for ($x = $secondPeak - 1; $x > $firstPeak; $x--) {
$fromFirst = $x - $firstPeak;
$score = $fromFirst * $fromFirst * ($secondPeak - $x) * ($maxBucketCount - $buckets[$x]);
if ($score > $bestValleyScore) {
$bestValley = $x;
$bestValleyScore = $score;
}
}
return ($bestValley << self::$LUMINANCE_SHIFT);
}
public function getBlackMatrix()
{
$source = $this->getLuminanceSource();
$width = $source->getWidth();
$height = $source->getHeight();
$matrix = new BitMatrix($width, $height);
// Quickly calculates the histogram by sampling four rows from the image. This proved to be
// more robust on the blackbox tests than sampling a diagonal as we used to do.
$this->initArrays($width);
$localBuckets = $this->buckets;
for ($y = 1; $y < 5; $y++) {
$row = (int)($height * $y / 5);
$localLuminances = $source->getRow($row, $this->luminances);
$right = (int)(($width * 4) / 5);
for ($x = (int)($width / 5); $x < $right; $x++) {
$pixel = ($localLuminances[(int)($x)] & 0xff);
$localBuckets[($pixel >> self::$LUMINANCE_SHIFT)]++;
}
}
$blackPoint = self::estimateBlackPoint($localBuckets);
// We delay reading the entire image luminance until the black point estimation succeeds.
// Although we end up reading four rows twice, it is consistent with our motto of
// "fail quickly" which is necessary for continuous scanning.
$localLuminances = $source->getMatrix();
for ($y = 0; $y < $height; $y++) {
$offset = $y * $width;
for ($x = 0; $x < $width; $x++) {
$pixel = (int)($localLuminances[$offset + $x] & 0xff);
if ($pixel < $blackPoint) {
$matrix->set($x, $y);
}
}
}
return $matrix;
}
public function createBinarizer($source)
{
return new GlobalHistogramBinarizer($source);
}
}