\Matrix\DecompositionLU

Summary

Methods
Properties
Constants
__construct()
getL()
getU()
getP()
getPivot()
isNonsingular()
solve()
No public properties found
No constants found
No protected methods found
No protected properties found
N/A
buildPivot()
localisedReferenceColumn()
applyTransformations()
findPivot()
pivotExchange()
computeMultipliers()
pivotB()
$luMatrix
$rows
$columns
$pivot
N/A

Properties

$luMatrix

$luMatrix

$rows

$rows

$columns

$columns

$pivot

$pivot

Methods

__construct()

__construct(\Matrix\Matrix  $matrix) : mixed

Parameters

\Matrix\Matrix $matrix

Returns

mixed —

getL()

getL() : \Matrix\Matrix

Get lower triangular factor.

Returns

\Matrix\Matrix —

Lower triangular factor

getU()

getU() : \Matrix\Matrix

Get upper triangular factor.

Returns

\Matrix\Matrix —

Upper triangular factor

getP()

getP() : \Matrix\Matrix

Return pivot permutation vector.

Returns

\Matrix\Matrix —

Pivot matrix

getPivot()

getPivot() : array

Return pivot permutation vector.

Returns

array —

Pivot vector

isNonsingular()

isNonsingular() : bool

Is the matrix nonsingular?

Returns

bool —

true if U, and hence A, is nonsingular

solve()

solve(\Matrix\Matrix  $B) : \Matrix\Matrix

Solve A*X = B.

Parameters

\Matrix\Matrix $B

a Matrix with as many rows as A and any number of columns

Throws

\Matrix\Exception

Returns

\Matrix\Matrix —

X so that LUX = B(piv,:)

buildPivot()

buildPivot() : void

localisedReferenceColumn()

localisedReferenceColumn(mixed  $column) : array

Parameters

mixed $column

Returns

array —

applyTransformations()

applyTransformations(mixed  $column, array  $luColumn) : void

Parameters

mixed $column
array $luColumn

findPivot()

findPivot(mixed  $column, array  $luColumn) : int

Parameters

mixed $column
array $luColumn

Returns

int —

pivotExchange()

pivotExchange(mixed  $pivot, mixed  $column) : void

Parameters

mixed $pivot
mixed $column

computeMultipliers()

computeMultipliers(mixed  $diagonal) : void

Parameters

mixed $diagonal

pivotB()

pivotB(\Matrix\Matrix  $B) : array

Parameters

\Matrix\Matrix $B

Returns

array —